Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Int J Biol Macromol ; 264(Pt 1): 130556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431014

RESUMO

The aim of this study was to investigate the effects of acetylation modification on the structural, interfacial and emulsifying properties of Millettia speciosa Champ polysaccharide (MSCP). Besides, the influence of acetylation modification on the encapsulation properties of polysaccharide-based emulsion was also explored. Results indicated that modification resulted in a prominent reduction in molecular weight of MSCP and the interfacial layer thickness formed by acetylated MSCP (AC-MSCP) was also decreased, but the adsorption rate and ability of AC-MSCP to reduce interfacial tension were improved. AC-MSCP formulated emulsion possessed smaller droplet size (6.8 µm) and exhibited better physical stability under stressful conditions. The chemical stability of ß-carotene was also profoundly enhanced by AC-MSCP fabricated emulsion. Moreover, AC-MSCP improved lipids digestion extent, thus facilitating the formation of micelle and increasing bioaccessibility of ß-carotene. This study provided insights for rational modification of polysaccharide-based emulsifier and designing delivery system for chemically labile hydrophobic bioactive components.


Assuntos
Millettia , beta Caroteno , Emulsões/química , beta Caroteno/química , Polissacarídeos/química , Emulsificantes/química
2.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398558

RESUMO

Millettia speciosa Champ. (MSCP) enjoys widespread recognition for its culinary and medicinal attributes. Despite the extensive history of MSCP cultivation, the disparities in quality and bioactivity between wild and cultivated varieties have remained unexplored. In this study, 20 wild and cultivated MSCP samples were collected from different regions in China. We embarked on a comprehensive investigation of the chemical constituents found in both wild and cultivated MSCP utilizing UHPLC-Q-Exactive Orbitrap-MS technology and multivariate analysis such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In total, 62 chemical components were unequivocally identified or tentatively characterized. Via the multivariate statistical analysis, we successfully pinpointed nine compounds with the potential to serve as chemical markers, enabling the differentiation between wild and cultivated MSCP varieties. Moreover, both genotypes exhibited substantial antioxidant and anti-fatigue properties. The bioactivities of wild MSCP were marginally higher when compared to their cultivated counterparts. This study illuminates the impressive antioxidant and anti-fatigue potential present in both wild and cultivated MSCP genotypes, further augmenting the allure of this species and opening new avenues for the economic valorization of MSCP. Hence, this study provides a valuable method for the identification and quality control of MSCP and a method in chemistry and pharmacology to assess an alternative possibility for cultivated MSCP.


Assuntos
Millettia , Cromatografia Líquida de Alta Pressão/métodos , Antioxidantes/farmacologia , Análise Multivariada , Controle de Qualidade
3.
Fish Shellfish Immunol ; 144: 109227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984616

RESUMO

Millettia speciosa Champ (MSP) is a natural Chinese herb that improves gastrointestinal health and enhances animal immunity. An 8-week feeding trial with different MSP levels (0, 150, 300, and 600 mg/kg) was conducted to evaluate the promotive effects of MSP in Cyprinus carpio. Results indicate that MSP improved intestinal immunity to some extent evidenced by the immuno-antioxidant parameters and the 16S rRNA in the Illumina MiSeq platform. With the analysis of transcriptome sequencing, 4685 differentially expressed genes (DEGs) were identified, including 2149 up-regulated and 2536 down-regulated. According to the GO and KEGG enrichments, DEGs were mainly involved in the immune system. Transcriptional expression of the NOD-like signaling pathway and key genes retrieved from the transcriptome database confirmed that innate immunity was improved in response to dietary MSP administration. Therefore, MSP could be used as a feed supplement that enhances immunity. This may provide insight into Chinese herb additive application in aquaculture production.


Assuntos
Carpas , Millettia , Animais , Millettia/genética , Carpas/genética , RNA Ribossômico 16S , Suplementos Nutricionais/análise , Intestinos
4.
Environ Res ; 245: 118044, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157963

RESUMO

The present research looked into possible biomedical applications of Pongamia pinnata leaf extract. The first screening of the phytochemical profile showed that the acetone extract had more phytochemicals than the other solvent extracts. These included more saponins, proteins, phenolic compounds, tannins, glycosides, flavonoids, steroids, and sugar. The P. pinnata acetone extract exhibited highest antibacterial activity against C. diphtheriae. The bactericidal activity was found in the following order: C. diphtheria (14 mm) > P. aeruginosa (10 mm) > S. flexneri (9 mm) > S. marcescens (7 mm) > S. typhi (7 mm) > S. epidermidis (7 mm) > S. boydii (6 mm) > S. aureus (3 mm) at 10 mg mL-1 concentration. MIC value of 240 mg mL-1 and MBC is 300 mg mL-1 of concentration with 7 colonies against C. diphtheriae was noticed in acetone extract. Acetone extract of P. pinnata was showed highest percentage of inhibition (87.5 %) at 625 mg mL-1 concentrations by DPPH method. Furthermore, the anti-inflammatory activity showed the fine albumin denaturation as 76% as well as anti-lipoxygenase was found as 61% at 900 mg mL-1 concentrations correspondingly. FT-IR analysis was used to determine the functional groups of compounds with bioactive properties. The qualitative examination of selected plants through HPLC yielded significant peak values determined by intervals through the peak value. In an acetone extract of P. pinnata, 9 functional groups were identified. These findings concluded that the acetone extract has high pharmaceutical value, but more in-vivo research is needed to assess its potential.


Assuntos
Antioxidantes , Millettia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Millettia/química , Espectroscopia de Infravermelho com Transformada de Fourier , Acetona , Staphylococcus aureus , Cromatografia Líquida de Alta Pressão , Antibacterianos/farmacologia , Antibacterianos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
5.
Pak J Biol Sci ; 26(9): 463-471, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38044696

RESUMO

<b>Background and Objective:</b> Drought stress is a condition of water shortage in plants. One tree species targeted for planting on marginal lands is <i>Pongamia pinnata</i> which produces oil for biodiesel feedstock. The aims of the present study were to evaluate the morphophysiological response of <i>Pongamia pinnata</i> and its resistance mechanism under drought stress at the seedling stage. <b>Materials and Methods:</b> Three months old Pongamia seedlings were given 4 treatments of watering intervals, namely every day (control) and every 7th, 14th and 21st day at field capacity indicating no stress, moderate stress, high stress and very high stress, respectively. Measurement of growth parameters was carried out every month for 4 months. Data were analyzed using one-way analysis of variance at a significance level of 5%. <b>Results:</b> Very high drought stress reduced plant survival to 60% at 3 MAP (month after planting) and dead at 4 MAP. Both moderate and high drought stresses slow down height growth. Both specific leaf area and leaf area ratio decreased dramatically by 45.7 and 63.74%, respectively at a very high drought stress treatment at 3 MAP. Root length decreased slightly by 18.40% at very high drought stress. Total plant dry weight decreased by 15.9 and 46.4% by high and very high drought stress respectively. Leaf pigment content decreased sharply to very high drought stress. <b>Conclusion:</b> Pongamia seedlings survived under moderate and high drought stress. This was achieved by reducing plant height, leaf area, dry weights and pigment content. The resistance mechanism was drought avoidance, achieved by dropping leaves and maintaining root growth.


Assuntos
Millettia , Árvores , Biocombustíveis , Secas , Água , Plântula , Folhas de Planta/fisiologia
6.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959674

RESUMO

The results of in silico screening of the 50 isolated compounds from Millettia dielsiana against the target proteins PDE4 (PDE4A, PDE4B, and PDE4D) showed binding affinity ranges from -5.81 to -11.56, -5.27 to -13.01, and -5.80 to -12.12 kcal mol-1, respectively, with median values of -8.83, -8.84, and -8.645 kcal mol-1, respectively. Among these compounds, Millesianin F was identified as the most promising PDE4A inhibitor due to its strongest binding affinity with the target protein PDE4A. (-11.56 kcal mol-1). This was followed by the compound 5,7,4'-trihydroxyisoflavone 7-O-ß-d-apiofuranosyl-(1→6)-ß-d-glucopyranoside (D50) with the binding affinity value of -11.35 kcal mol-1. For the target protein PDE4B, compound D50 exhibited the strongest binding affinity value of -13.01 kcal mol-1, while showing poorer inhibition ability for PDE4D. The 100 ns MD simulation examination (radius of gyration, Solvent Accessible Surface Area (SASA), Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), and hydrogen bonding) was carried out to examine the overall stability and binding efficiency of the protein-ligand complex between compounds (Millesianin F, Millesianin G, Claclrastin-7-O-ß-d-glucopyranoside, 7-hydroxy-4',6 dimethoxyisoflavone-7-O-ß-d-apiofuranosyl-(1→6)-ß-d-glucopyranoside, 7-hydroxy-4',8-dimethoxyisoflavone 7-O-ß-d-apiofuranosyl-(1→6)-ß-d-glucopyranoside, Odoratin-7-O-ß-d-glucopyranoside, and 5,7,4'-trihydroxyisoflavone 7-O-ß-d-apiofuranosyl-(1→6)-ß-d-glucopyranoside) and PDE4 (A, B) subtype proteins. Compound D50 has shown strong anti-inflammatory activity, as evidenced by experimental results. It effectively inhibits PDE4B and PDE4D, with IC50 values of 6.56 ± 0.7 µM and 11.74 ± 1.3 µM, respectively. Additionally, it reduces NO production, with an IC50 value of 5.40 ± 0.9 µM. Based on these findings, it is promising and considered a potential novel anti-inflammatory drug for future development.


Assuntos
Millettia , Inibidores da Fosfodiesterase 4 , Inibidores da Fosfodiesterase 4/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Millettia/química , Anti-Inflamatórios/farmacologia
7.
J Plant Physiol ; 288: 154060, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542942

RESUMO

Abiotic stress, such as salt and drought stress, seriously limits plant growth and crop yield. Abscisic acid (ABA) is essential in regulating plant responses to abiotic stress via signal perception, transduction, and transcriptional regulation. Pongamia (Millettia pinnata) is a kind of semi-mangrove plant with strong stress tolerance and can grow in fresh and sea water. However, the molecular mechanism of the ABA signaling pathway mediating the environmental tolerance of Pongamia is still scarce so far. AITR (ABA-Induced Transcription Repressor) was a recently identified small conserved family of transcription factor in angiosperms, which played controversial roles in response to abiotic stresses in different species. Here, we identified an ABA-induced gene, MpAITR1, which encoded a nucleus localization transcriptional factor in Pongamia. MpAITR1 was highly induced by ABA and salt treatments in roots and leaves. Heterologous expression of MpAITR1 in Arabidopsis increased sensitivity to ABA, moreover, enhanced tolerance to salt and drought stress. The expression levels of some ABA-responsive and stress-responsive genes were altered in transgenic plants compared to wild-type plants under the ABA, salt, and drought stress, which was consistent with the stress-tolerant phenotype of transgenic plants. These results reveal that MpAITR1 positively modulates ABA signaling pathways and enhances the tolerance to salt and drought stress by regulating downstream target genes. Taken together, MpAITR1 from the semi-mangrove plant Pongamia serves as a potential candidate for stress-tolerant crop breeding.


Assuntos
Arabidopsis , Millettia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Millettia/genética , Millettia/metabolismo , Resistência à Seca , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Carbohydr Polym ; 316: 121034, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321729

RESUMO

We report for the first time the usage of Millettia speciosa Champ cellulose (MSCC) and carboxymethylcellulose (MSCCMC) for the fabrication of 3D-network hydrogel as delivery system for probiotics. The structural features, swelling behavior and pH-responsiveness of MSCC-MSCCMC hydrogels and their encapsulation and controlled-release behavior for Lactobacillus paracasei BY2 (L. paracasei BY2) were mainly studied. Structural analyses demonstrated that MSCC-MSCCMC hydrogels with porous and network structures were successfully synthesized through the crosslinking of -OH groups between MSCC and MSCCMC molecules. An increasing concentration of MSCCMC significantly improved the pH-responsiveness and swelling ability of the MSCC-MSCCMC hydrogel toward neutral solvent. Besides, the encapsulation efficiency (50.38-88.91 %) and release (42.88-92.86 %) of L. paracasei BY2 were positively correlated with the concentration of MSCCMC. The higher the encapsulation efficiency was, the higher the release in the target intestine. However, due to the existence of bile salts, controlled-release behavior decreased the survivor rate and physiological state (degrading cholesterol) of encapsulating L. paracasei BY2. Even so, the number of viable cells encapsulated by hydrogels still reached the minimum effective concentration in the target intestine. This study provides an available reference for the practical application of hydrogels fabricated from the cellulose of the Millettia speciosa Champ plant for probiotic delivery.


Assuntos
Lacticaseibacillus paracasei , Millettia , Celulose/química , Preparações de Ação Retardada , Millettia/química , Hidrogéis/química , Concentração de Íons de Hidrogênio
9.
BMC Complement Med Ther ; 23(1): 147, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143007

RESUMO

BACKGROUND: M. pyrrhocarpa is a new plant in the Fabaceae: Faboideae family that is found in Thailand. A literature search revealed that the Milletia genus is rich in bioactive compounds possessing a wide range of biological activities. In this study, we aimed to isolate novel bioactive compounds and to study their bioactivities. METHODS: The hexane, ethyl acetate, and methanol extracts from the leaves and twigs of M. pyrrhocarpa were isolated and purified using chromatography techniques. These extracts and pure compounds were tested in vitro for their inhibitory activities against nine strains of bacteria, as well as their anti-HIV-1 virus activity and cytotoxicity against eight cancer cell lines. RESULTS: Three rotenoids, named 6aS, 12aS, 12S-elliptinol (1), 6aS, 12aS, 12S-munduserol (2), dehydromunduserone (3), and crude extracts were evaluated for antibacterial, anti-HIV, and cytotoxic activities. It was found that compounds 1-3 inhibited the growth of nine strains of bacteria, and the best MIC/MBC values were obtained at 3/ > 3 mg/mL. The hexane extract showed anti-HIV-1 RT with the highest %inhibition at 81.27 at 200 mg/mL, while 6aS, 12aS, 12S-elliptinol (1) reduced syncytium formation in 1A2 cells with a maximum EC50 value of 4.48 µM. Furthermore, 6aS, 12aS, 12S-elliptinol (1) showed cytotoxicity against A549 and Hep G2 cells with maximum ED50 values of 2.27 and 3.94 µg/mL. CONCLUSION: This study led to the isolation of constituents with potential for medicinal application, providing compounds (1-3) as lead compounds against nine strains of bacteria. The hexane extract showed the highest %inhibition of HIV-1 virus, Compound 1 showed the best EC50 in reducing syncytium formation in 1A2 cells, and it also showed the best ED50 against human lung adenocarcinoma (A549) and human hepatocellular carcinoma (Hep G2). The isolated compounds from M. pyrrhocarpa offered significant potential for future medicinal application studies.


Assuntos
Millettia , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hexanos , Bactérias
10.
J Ethnopharmacol ; 309: 116325, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36906157

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dementias including Alzheimer disease (AD) are three times higher in menopausal women than in men. Phytoestrogens, a group of plant-derived compounds are known to alleviate menopausal complaints including dementia. Millettia griffoniana Baill is a phytoestrogen-rich plant used to treat menopausal complaints and dementia. AIM: Evaluating the estrogenic and neuroprotective potential of Millettia griffoniana on ovariectomized (OVX) rats. MATERIALS AND METHODS: The in vitro safety of M. griffoniana ethanolic extract was assayed by MTT in human mammary epithelial (HMEC) and mouse neuronal (HT-22) cells and its lethal dose 50 (LD50) was estimated following OECD 423 guidelines. For estrogenicity, in vitro the well known E-screen assay on MCF-7 cells was performed and in vivo four groups of OVX rats were treated either with 75, 150 and 300 mg/kg M. griffoniana extract doses or estradiol (1 mg/kg BW) for three days; and changes in uterine and vagina were analyzed. Then, for neuroprotective effect, Alzheimer-type dementia induction was achieved by scopolamine (1.5 mg/kg B.W., i.p.) injection four days/week and M. griffoniana extract as well as piracetam (standard) were administered daily for 2 weeks to evaluate the extract's neuroprotective potential. The endpoints were the assessment of learning and working memory, oxidative stress state (SOD, CAT, and MDA) in brain, acetylcholine esterase (AChE) activity and the histopathological changes in hippocampus. RESULTS: No toxic effect was observed when incubating mammary (HMEC) and neuronal (HT-22) cells with M. griffoniana ethanol extract for 24 h and its LD50 was found >2000 mg/kg. The extract also exhibited both in vitro and in vivo estrogenic activities, displayed by a significant (p < 0.01) increment in MCF-7 cells population in vitro and an increase in the epithelium height of the vagina and the wet weight of the uterus mainly with the 150 mg/kg BW extract dose compared to untreated OVX rats. The extract also reversed scopolamine-induced memory impairment in rat by improving learning, working and reference memory. This was associated with an increment in CAT and SOD expression, alongside a decrement in MDA content and AChE activity in hippocampus. Further, the extract reduced neuronal cell loss in hippocampal structures (CA1, CA3 and dentate gyrus). High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS) spectra, revealed the presence of numerous phytoestrogens in M. griffoniana extract. CONCLUSION: M. griffoniana ethanolic extract has estrogenic, anticholinesterase and antioxidant activities that could account for its anti-amnesic effects. These findings therefore sheds light on why this plant is commonly used in the therapy of menopausal complaints and dementia.


Assuntos
Demência , Millettia , Ratos , Feminino , Camundongos , Humanos , Animais , Fitoestrógenos/farmacologia , Ratos Wistar , Millettia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Etanol , Estrona , Superóxido Dismutase , Derivados da Escopolamina
11.
J Biotechnol ; 362: 54-62, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592666

RESUMO

An acid polysaccharide, named HP, was produced by endophytic Penicillium javanicum MSC-R1 isolated from southern medicine Millettia speciosa Champ. The molecular weight of HP was 37.8 kDa and consisted of Ara f, Galр, Glcр, Manр, and GlcрA with a molar ratio of 1.09: 3.47: 68.48: 16.59: 8.85. The glycosidic linkage of HP was proven to be →3, 4)-α-D-Glcр-(1→6)-α-D-Manр-(1→, →3, 4)-α-D-Glcр-(1→4)-α-D-Glcр-(1→, →3), →6)-α-D-Manр-(1→4)-α-D-Glcр-(1→, →3), ß-D-Galр-(1→3)-α-D-Glcр-(1→, →4), →5)-α-L-Ara f -(1→3)-α-D-Glcр-(1→, →4), →6)-α-D-Manр-(1→4)-α-D-GlcAр-(1→ and →4)-α-D-GlcAр-(1→4)-α-D-Glcр-(1→, →3). Additionally, 250 µg/mL of HP possessed nontoxicity to RAW 264.7 cells and exhibited anti-inflammation activity. HP could significantly restrain the amount of tumor necrosis factor-α, interleukin-6 and NO release in RAW264.7, which property is possibly associated with its abundant glucosidic linkage. These results indicated that HP could be regarded as a ponderable ingredient for the health-beneficial functional foods.


Assuntos
Millettia , Penicillium , Animais , Camundongos , Millettia/química , Polissacarídeos/química , Penicillium/química , Células RAW 264.7
12.
Nat Prod Res ; 37(5): 829-834, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35722767

RESUMO

Chemical analysis of the methanol extract of the root bark of Millettia aboensis led to the isolation of homopterocarpin (1), secundiflorol I (2), and maackain (3). The structures of these compounds were elucidated based on their MS and NMR spectra. The crude methanol root extract was screened for its cytotoxic activity on mouse lymphoma cell line (L5178Y), and the isolated compounds were tested for their antioxidant activity using a 2, 2-diphenylhydrazyl (DPPH) radical scavenging model. The crude methanol root extract gave a percentage growth inhibition of 87.5% on the mouse lymphoma cell line (L5178Y). Compound 3 gave the highest antioxidant activity with an IC50 of 83 µg/ml. These compounds can serve as leads for anticancer agents.


Assuntos
Antineoplásicos , Millettia , Pterocarpanos , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Pterocarpanos/farmacologia , Pterocarpanos/química , Millettia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metanol
13.
Nat Prod Res ; 37(1): 31-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34212817

RESUMO

Natural plant-derived protein with excellent bioactivities has attracted much attention so a functional protein with molecular weight of 15.2 kDa was extracted from Millettia speciosa Champ. leaf for the first time. Under the pH of 12.0, solid-liquid ratio of 1:40 (w/v), extraction time of 2.0 h, and extraction temperature of 50 °C, the highest extracting efficiency (79.25 ± 0.78%) of the Millettia speciosa Champ. leaf protein (MLP) was achieved. The main structure of MLP contained ß-fold and ß-corner by Fourier transform infrared spectroscopy (FTIR) and Circular dichroism (CD) spectra analysis. Additionally, MLP was predominant with glutamic acid, aspartic acid, and leucine, which could be considered as a high quality natural protein. MLP showed great water holding capacity (WHC), oil absorption capacity (OAC), as well as emulsifying and foaming properties. Simultaneously, MLP exhibited considerable antioxidant activity. These results suggested that MLP could be utilised as a promising ingredient of functional foods.


Assuntos
Millettia , Millettia/química , Antioxidantes/química , Proteínas de Plantas/análise , Ácido Aspártico , Folhas de Planta/química
14.
Environ Sci Pollut Res Int ; 30(7): 18535-18545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36215005

RESUMO

Climate change has an extremely important impact on the geographic distribution of plants. The genus Millettia is an important plant resource in China and is widely used in medicine and ornamental industries. Due to the continuous changes of climate and the development and utilization of plant resources of the genus Millettia, it is of great significance to systematically investigate the geographic distribution of plants of the Millettia and their potential distribution under climate change. DIVA-GIS software was used to analyze 3492 plant specimens of 35 species of genus Millettia in the herbarium, and the ecological geographic distribution and richness of Millettia were analyzed, and the MaxEnt model was used to analyze the current and potential distribution in the future. The results show that the genus Millettia is distributed in 30 provinces in China, among which Yunnan and Guangdong provinces are the most distributed. Our model determines that precipitation in the driest month and annual temperature range are the most important bioclimatic variables. Future climate changes will increase the suitable habitat area of M. congestiflora by 16.75%, but other cliff beans Suitable habitats for vines will decrease significantly: M. cinereal by 47.66%, M. oosperma by 39.16%, M. pulchra by 36.04%, M. oraria by - 29.32%, M. nitida by 22.88%, M. dielsiana by 22.72%, M. sericosema by 19.53%, M. championii by 7.77%, M. pachycarpa by 7.72%, M. speciose by 2.05%, M. reticulata by 1.32%. Therefore, targeted measures should be taken to protect and develop these precious plant resources.


Assuntos
Mudança Climática , Millettia , China , Ecossistema , Previsões
15.
Environ Res ; 219: 115055, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574797

RESUMO

The primary source of soil pollution is a complex mixture of numerous inorganic and organic compounds (including chlorinated compounds, nutrients, and heavy metals, etc.). The presence of all of these compounds makes remediation and cleanup difficult. In this study, the phytoremediation ability of Jatropha curcas and Pongamia pinnata was tested to remove nickel (Ni) and Zinc (Zn) from paper mill and municipal landfill contaminated soils, to understand the uptake potential and to estimate the accumulation pattern of Ni and Zn in the vegetative parts of the plant. The experiments were carried out in pots (3 kg capacity) and the different combinations of soil were made by mixing the contaminated soil with a reference soil (forest soil) as T0, T25, T50, T75 and T100. The plant biomass, chlorophyll content, proline, nitrate reductase activity and metal removal efficiency (%)were determined after 120 DAS (i.e., the days after sowing). The results of the study showed that with increasing metal stress, there is a reduction in the above-ground biomass content in both the plant species with a slightly less impact on the root biomass. Over a period of 4 months, J. curcas and P. pinnata removed 82-86% and 93-90% Ni, respectively. The removal of Zn was significantly less as compared to Ni as most of the Zn remained in the belowground part (roots) and in the soil. Besides, the phytostabilization capacities of the plants were calculated on the basis of their tolerance index (TI), bioaccumulation factor (BAF) and translocation factor (TF). The low BAF and TF values with increasing heavy metals (HMs) content indicates its higher phytostabilization capacity in the root and rhizospheric region as compared to phytoaccumulation.


Assuntos
Jatropha , Metais Pesados , Millettia , Poluentes do Solo , Zinco , Níquel , Biodegradação Ambiental , Resíduos Sólidos , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Plantas
16.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558112

RESUMO

In silico docking studies of 50 selected compounds from Millettia dielsiana Harms ex Diels (family Leguminosae) were docked into the binding pocket of the PI3K/mTOR protein. In there, compounds trans-3-O-p-hydroxycinnamoyl ursolic acid (1) and 5,7,4'-trihydroxyisoflavone 7-O-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (2) are predicted to be very promising inhibitors against PI3K/mTOR. They direct their cytotoxic activity against Hepatocellular carcinoma with binding affinity (BA) values, the pulling work spent to the co-crystallized ligand from the binding site of PI3K/mTOR (W and Fmax), and the non-equilibrium binding free energy (∆GneqJar) as BA values = -9.237 and -9.083 kcal/mol, W = 83.5 ± 10.6 kcal/mol with Fmax = 336.2 ± 45.3 pN and 126.6 ± 21.7 kcal/mol with Fmax = 430.3 ± 84.0 pN, and ∆GneqJar = -69.86074 and -101.2317 kcal/mol, respectively. In molecular dynamic simulation, the RMSD value of the PI3K/mTOR complex with compounds (1 and 2) was in the range of 0.3 nm to the end of the simulation. Therefore, the compounds (1 and 2) are predicted to be very promising inhibitors against PI3K/mTOR. The crude extract, ethyl acetate fraction and compounds (1 and 2) from Millettia dielsiana exhibited moderate to potent in vitro cytotoxicity on Hepatocellular carcinoma cell line with IC50 values of 81.2 µg/mL, 60.4 µg/mL, 23.1 µM, and 16.3 µM, respectively, and showed relatively potent to potent in vitro antioxidant activity on mouse hepatocytes with ED50 values of 24.4 µg/mL, 19.3 µg/mL, 30.7 µM, and 20.5 µM, respectively. In conclusion, Millettia dielsiana and compounds (1 and 2) are predicted to have very promising cytotoxic activity against Hepatocellular carcinoma and have a hepatoprotective effect.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Millettia , Camundongos , Animais , Millettia/química , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Serina-Treonina Quinases TOR , Fosfatidilinositol 3-Quinases , Simulação de Acoplamento Molecular
17.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364224

RESUMO

The root of Millettia speciosa Champ. (MSCP) is used in folk medicine and is popular as a soup ingredient. The root is composed of the rhizome and radix, but only the radix has been used as a food. Thus, it is very important to compare the chemical components and antioxidant activities between the rhizome and radix. The extracts were analyzed by UHPLC-Q-Exactive Orbitrap-MS and multivariate analysis, and the antioxidant activities were evaluated by 2,20-azinobis (3-ethylbenzothiazo-line-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Ninety-one compounds were detected simultaneously and temporarily identified. Ten compounds were identified as chemical markers to distinguish the rhizome from the radix. The antioxidant activities of the radix were higher than the rhizome. Correlation analysis showed that uvaol-3-caffeate, 3-O-caffeoyloleanolic acid, and khrinone E were the main active markers for antioxidant activity, which allowed for the rapid differentiation of rhizomes and the radix. Therefore, it could be helpful for future exploration of its material base and bioactive mechanism. In addition, it would be considered to be used as a new method for the quality control of M. speciosa.


Assuntos
Antioxidantes , Millettia , Antioxidantes/farmacologia , Antioxidantes/química , Rizoma , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química
18.
Biomed Res Int ; 2022: 2486979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440354

RESUMO

Millettia speciosa is a plant extensively used as an important component in Chinese herbal medicine and food-based medicines. The present study was carried out to determine the total flavonoid content (TFC), volatile phytoconstituents, and pharmacological activities, i.e., antityrosinase, sunscreen, and anticancer activity, of different fractions of M. speciosa stem. Different organic solvents of increasing polarity, i.e., petroleum ether (PE), ethyl acetate (EtOAc), and methanol (MeOH), were used for extraction. The highest total flavonoid content, i.e., 48.30 ± 0.90%, was reported for PE extract. Various important phytocomponents were revealed by gas chromatography-mass spectroscopy (GC-MS) analysis. Based on abundance, the major compounds were n-hexadecanoic acid (16.654%), n-hexadecanoic acid (14.808%), and beta-sitosterol (6.298%) for PE, EtOAc, and MeOH extract, respectively. The significant antityrosinase activity, i.e., 70.97 ± 0.66%, with an IC50 value of 4.58 mg/mL was noted for PE extract followed by EtOAc extract, i.e., 59.84 ± 0.67%, with IC50 value of 6.10 mg/mL. The maximum sunscreen activity was reported for PE extract exhibiting the maximum absorbance value (0.633 ± 0.06) in the ultraviolet (UV) region, i.e., UVC, while EtOAc extract showed the second highest level of absorbance in the UVB range, i.e., 0.632 ± 0.07. The strongest anticancer activity (49.73 ± 0.49% cell viability) towards MCF-7 breast cancer cell line was reported for PE extract with IC50 197.51 µg/mL. Our results confirmed the presence of potential therapeutic components for each extract with significant biological functions, showing the importance of the M. speciosa stem as a source of biomedicine. To our knowledge, this is the first report on M. speciosa stem extending comprehensive research about its phytochemical profile and various significant pharmacological activities.


Assuntos
Millettia , Pós , Solventes , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Protetores Solares , Ácido Palmítico , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise , Emolientes , Metanol
19.
J Environ Manage ; 324: 116297, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174475

RESUMO

Pongamia pinnata (L.) Pierre (Pongamia) is a tree native to Southeast Asia. Recently, interest in Pongamia focused on its potential as a biofuel source as its seeds contain around 40% oil. However, Pongamia has multiple applications beyond biofuel production. It is a legume, can form symbiotic associations with mycorrhizal fungi, has been shown to be tolerant to drought, salinity, and heavy metals in soil, and has potential to mitigate climate change. Additionally, Pongamia oil has medicinal properties, can be used as biopesticide, insect repellent, to produce soap, and as a source of edible grade vegetable oil. The seed cake can be used as a source of bioenergy, food and feed protein, and organic fertiliser, and the flowers are a good source of pollen and nectar. Pongamia can also bring socio-economic benefits as its ability to restore degraded and contaminated land provides opportunities for local communities through novel valorisation pathways. These multiple applications have potential to form part of a circular bioeconomy in line with sustainable development goals. Although research on the multiple applications of Pongamia has grown considerably, knowledge gaps remain and these need to be addressed so that the full potential of Pongamia can be achieved. Further understanding of the mechanisms underlying its resilience to abiotic stresses, phytoremediation potential and biotic interactions should be a priority, and co-ordinated breeding efforts will be key. Here, we critically review the available literature on Pongamia and highlight gaps in knowledge in which future research should focus on to ensure that the full potential of this versatile tree can be achieved. We conclude that Pongamia can potentially form part of a circular bioeconomy and that harnessing the multiple applications of Pongamia in a holistic manner, with collaboration among key stakeholders, is crucial for the successful application of its benefits far beyond biofuel production.


Assuntos
Millettia , Pongamia , Millettia/metabolismo , Sequestro de Carbono , Biocombustíveis , Melhoramento Vegetal , Árvores/metabolismo , Fatores Socioeconômicos
20.
Mol Biol Rep ; 49(10): 9453-9463, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057878

RESUMO

BACKGROUND: Pongamia is considered an important biofuel species worldwide. Drought stress in the early growth stages of Pongamia influences negatively on the germination and seedling development. Due to lack of cultivar stability under drought stress conditions, establishment of successful plantation in drought hit areas becomes a major problem. To address this issue, drought stress response of four Pongamia genotypes was studied at morphological, physio-chemical and transcriptome levels. METHODS AND RESULTS: Drought stress was levied by limiting water for 15 days on three months old seedlings of four genotypes. A significant effect of water stress was observed on the traits considered. The genotype NRCP25 exhibited superior morpho-physiological, biochemical drought responses. Also, the genotype had higher root length, photosynthetic pigments, higher antioxidant enzymes and solute accumulation compared to other genotypes. In addition, transcript profiling of selected drought responsive candidate genes such as trehalose phosphate synthase 1 (TPS1), abscisic acid responsive elements-binding protein 2 (ABF2-2), heat shock protein 17 (HSP 17 kDa), tonoplast intrinsic protein 1 (TIP 1-2), zinc finger homeodomain protein 2 (ZFP 2), and xyloglucan endotransglucolase 13 (XET 13) showed only up-regulation in NRCP25. Further, the transcriptome responses are in line with key physio-chemical responses exhibited by NRCP25 for drought tolerance. CONCLUSIONS: As of now, there are no systematic studies on Pongamia drought stress tolerance; therefore this study offers a comprehensive understanding of whole plant drought stress responsiveness of Pongamia. Moreover, the results support important putative trait indices with potential candidate genes for drought tolerance improvement of Pongamia.


Assuntos
Secas , Millettia , Ácido Abscísico , Antioxidantes/metabolismo , Biocombustíveis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Millettia/genética , Millettia/metabolismo , Fosfatos , Estresse Fisiológico/genética , Transcriptoma/genética , Trealose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...